1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio

Opt Lett. 2016 Nov 1;41(21):5067-5070. doi: 10.1364/OL.41.005067.

Abstract

In this Letter, a high-power supercontinuum (SC) laser source which spanned from 1.9 to 3.6 μm with an all-fiber configuration was reported. This SC laser was obtained by concatenating a thulium-doped fiber amplifier (TDFA) and a 12 cm long highly nonlinear germania fiber. A 1.9-2.7 μm SC laser from the TDFA was spectrally broadened continuously into the mid-infrared region (>3 μm) in the following germania fiber. When the repetition rate was 2 MHz, the obtained SC laser had a maximum output power of 6.12 W with an optical conversion efficiency of 15.3% with respect to the TDFA pump power. The SC laser had a spectral bandwidth of 1506 nm ranging from 1944 to 3450 nm at the -20 dB level. The SC power with wavelengths >3 μm was 2.9 W, corresponding to a high power ratio of 47.4% in the mid-infrared region. The achieved power ratio in the mid-infrared region, as well as the long wavelength cutoff, to the best of our knowledge, were the best results ever reported in germania fibers.