X-ray reflectometer for single layer and multilayer coating characterization at 8 keV: An interlaboratory study

Rev Sci Instrum. 2016 Oct;87(10):104501. doi: 10.1063/1.4965978.

Abstract

An X-ray reflectometer (XRR) system has been developed at the Marshall Space Flight Center (MSFC) for characterizing various soft and hard X-ray optic coatings. The XRR instrument generates X-ray radiation using a high-output rotating anode source (RAS), operational over a voltage range of 5-35 kV and a current range of 10-150 mA. Copper is used as the target material to produce an X-ray spectrum from which the Kα line at 8.048 keV is isolated for the reflectivity measurements. Five precision slits are mounted along the X-ray beam path to limit the extent of the beam at the sample and to adjust the resolution in the measurements. A goniometer consisting of two precision rotary stages controls the positions of the coating sample and the X-ray detector with respect to the beam. The detector itself is a high performance silicon drift detector used to achieve high count rate efficiency to attain good statistics in the reflectivity measurement at larger grazing angles. The X-ray reflectometer system design and capabilities are described in detail. Verification of the system is obtained through an interlaboratory study in which reflectivity measurements of a multilayer coating made at MSFC are compared with those made at two external laboratories.