Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes

Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13063-13068. doi: 10.1073/pnas.1613701113. Epub 2016 Oct 31.

Abstract

Neurons depend on oxidative phosphorylation for energy generation, whereas astrocytes do not, a distinctive feature that is essential for neurotransmission and neuronal survival. However, any link between these metabolic differences and the structural organization of the mitochondrial respiratory chain is unknown. Here, we investigated this issue and found that, in neurons, mitochondrial complex I is predominantly assembled into supercomplexes, whereas in astrocytes the abundance of free complex I is higher. The presence of free complex I in astrocytes correlates with the severalfold higher reactive oxygen species (ROS) production by astrocytes compared with neurons. Using a complexomics approach, we found that the complex I subunit NDUFS1 was more abundant in neurons than in astrocytes. Interestingly, NDUFS1 knockdown in neurons decreased the association of complex I into supercomplexes, leading to impaired oxygen consumption and increased mitochondrial ROS. Conversely, overexpression of NDUFS1 in astrocytes promoted complex I incorporation into supercomplexes, decreasing ROS. Thus, complex I assembly into supercomplexes regulates ROS production and may contribute to the bioenergetic differences between neurons and astrocytes.

Keywords: bioenergetics; brain; glycolysis; lactate; redox.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / metabolism*
  • Cells, Cultured
  • Electron Transport Complex I / metabolism*
  • Energy Metabolism
  • Mice, Inbred C57BL
  • Mitochondria / metabolism*
  • Neurons / metabolism*
  • Rats, Wistar
  • Reactive Oxygen Species / metabolism*

Substances

  • Reactive Oxygen Species
  • Electron Transport Complex I