Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals

Nano Lett. 2016 Dec 14;16(12):7376-7380. doi: 10.1021/acs.nanolett.6b02772. Epub 2016 Nov 2.

Abstract

We report the one-pot synthesis of colloidal Mn-doped cesium lead halide (CsPbX3) perovskite nanocrystals and efficient intraparticle energy transfer between the exciton and dopant ions resulting in intense sensitized Mn luminescence. Mn-doped CsPbCl3 and CsPb(Cl/Br)3 nanocrystals maintained the same lattice structure and crystallinity as their undoped counterparts with nearly identical lattice parameters at ∼0.2% doping concentrations and no signature of phase separation. The strong sensitized luminescence from d-d transition of Mn2+ ions upon band-edge excitation of the CsPbX3 host is indicative of sufficiently strong exchange coupling between the charge carriers of the host and dopant d electrons mediating the energy transfer, essential for obtaining unique properties of magnetically doped quantum dots. Highly homogeneous spectral characteristics of Mn luminescence from an ensemble of Mn-doped CsPbX3 nanocrystals and well-defined electron paramagnetic resonance spectra of Mn2+ in host CsPbX3 nanocrystal lattices suggest relatively uniform doping sites, likely from substitutional doping at Pb2+. These observations indicate that CsPbX3 nanocrystals, possessing many superior optical and electronic characteristics, can be utilized as a new platform for magnetically doped quantum dots expanding the range of optical, electronic, and magnetic functionality.

Keywords: Mn-doping; Perovskite; exciton-to-dopant energy transfer; sensitized phosphorescence.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.