Plant colonization and survival along a hydrological gradient: demography and niche dynamics

Oecologia. 2017 Jan;183(1):201-210. doi: 10.1007/s00442-016-3760-9. Epub 2016 Oct 28.

Abstract

Predicting the effect of a changing environment, e.g., caused by climate change, on realized niche dynamics, and consequently, biodiversity is a challenging scientific question that needs to be addressed. One promising approach is to use estimated demographic parameters for predicting plant abundance and occurrence probabilities. Using longitudinal pinpoint cover data sampled along a hydrological gradient in the Marais poitevin grasslands, France, the effect of the gradient on the demographic probabilities of colonization and survival was estimated. The estimated probabilities and calculated elasticities of survival and colonization covaried with the observed cover of the different species along the hydrological gradient. For example, the flooding tolerant grass A. stolonifera showed a positive response in both colonization and survival to flooding, and the hydrological gradient is clearly the most likely explanation for the occurrence pattern observed for A. stolonifera. The results suggest that knowledge on the processes of colonization and survival of the individual species along the hydrological gradient is sufficient for at least a qualitative understanding of species occurrences along the gradient. The results support the hypothesis that colonization has a predominant role for determining the ecological success along the hydrological gradient compared to survival. Importantly, the study suggests that it may be possible to predict the realized niche of different species from demographic studies. This is encouraging for the important endeavor of predicting realized niche dynamics.

Keywords: Flooding gradient; Niche dynamics; Plant abundance; Plant cover; Plant demography.

MeSH terms

  • Biodiversity
  • Climate Change*
  • Demography
  • Ecosystem*
  • Plants