The Unanticipated Dimerization of Ce@C2v (9)-C82 upon Co-crystallization with Ni(octaethylporphyrin) and Comparison with Monomeric M@C2v (9)-C82 (M = La, Sc, and Y)

Chemistry. 2016 Dec 12;22(50):18115-18122. doi: 10.1002/chem.201602595. Epub 2016 Oct 28.

Abstract

We report that Ce@C2v (9)-C82 forms a centrosymmetric dimer when co-crystallized with Ni(OEP) (OEP = octaethylporphyrin dianion). The crystal structure of {Ce@C2v (9)-C82 }2 ⋅2[Ni(OEP)]⋅4 C6 H6 shows that a new C-C bond with a bond length of 1.605(5) Å connects the two cages. The high spin density of the singly occupied molecular orbital (SOMO) on the cage and the pyramidalization of the cage are factors that favor dimerization. In contrast, the treatment of Ni(OEP) with M@C2v (9)-C82 (M = La, Sc, and Y) results in crystallization of monomeric endohedral fullerenes. A systematic comparison of the X-ray structures of M@C2v (9)-C82 (M = Sc, Y, La, Ce, Gd, Yb, and Sm) reveals that the major metal site in each case is located at an off-center position adjacent to a hexagonal ring along the C2 axis of the C2v (9)-C82 cage. DFT calculations at the M06-2X level revealed that the positions of the metal centers in these metallofullerenes M@C2v (9)-C82 (M = Sc, Y, and Ce), as determined by single-crystal X-ray structure studies, correspond to an energy minimum for each compound.

Keywords: cage compounds; crystal growth; dimerization; metallofullerenes; structure elucidation.