Perceptual training profoundly alters binocular rivalry through both sensory and attentional enhancements

Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12874-12879. doi: 10.1073/pnas.1602722113. Epub 2016 Oct 24.

Abstract

The effects of attention, as well as its functional utility, are particularly prominent when selecting among multiple stimuli that compete for processing resources. However, existing studies have found that binocular rivalry-a phenomenon characterized by perceptual competition between incompatible stimuli presented to the two eyes-is only modestly influenced by selective attention. Here, we demonstrate that the relative resistance of binocular rivalry to selective modulations gradually erodes over the course of extended perceptual training that uses a demanding, feature-based attentional task. The final result was a dramatic alteration in binocular rivalry dynamics, leading to profound predominance of the trained stimulus. In some cases, trained observers saw the trained rival image nearly exclusively throughout 4-min viewing periods. This large change in binocular rivalry predominance was driven by two factors: task-independent, eye-specific changes in visual processing, as well as an enhanced ability of attention to promote predominance of the task-relevant stimulus. Notably, this strengthening of task-driven attention also exhibited eye specificity above and beyond that from observed sensory processing changes. These empirical results, along with simulations from a recently developed model of interocular suppression, reveal that stimulus predominance during binocular rivalry can be realized both through an eye-specific boost in processing of sensory information and through facilitated deployment of attention to task-relevant features in the trained eye. Our findings highlight the interplay of attention and binocular rivalry at multiple visual processing stages and reveal that sustained training can substantially alter early visual mechanisms.

Keywords: binocular rivalry; perceptual learning; visual attention; visual plasticity.