Rate Constant of the Reaction between CH3O2 Radicals and OH Radicals Revisited

J Phys Chem A. 2016 Nov 17;120(45):8923-8932. doi: 10.1021/acs.jpca.6b07704. Epub 2016 Nov 7.

Abstract

The reaction between CH3O2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH4 and H2O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF2. An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH3O2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH3O2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm-1 using two different methods. A rate constant of k1 = (1.60 ± 0.4) × 10-10 cm3 s-1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10-10 cm3 s-1) using CH3I photolysis as a precursor. Quenching of electronically excited I atoms (from CH3I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.