Continuous Sensing Photonic Lab-on-a-Chip Platform Based on Cross-Linked Enzyme Crystals

Anal Chem. 2016 Dec 6;88(23):11919-11923. doi: 10.1021/acs.analchem.6b03793. Epub 2016 Nov 7.

Abstract

Microfluidics or lab-on-a-chip technology offer clear advantages over conventional systems such as a dramatic reduction of reagent consumption or a shorter analysis time, which are translated into cost-effective systems. In this work, we present a photonic enzymatic lab-on-a-chip reactor based on cross-linked enzyme crystals (CLECs), able to work in continuous flow, as a highly sensitive, robust, reusable, and stable platform for continuous sensing with superior performance as compared to the state of the art. The microreactor is designed to facilitate the in situ crystallization and crystal cross-linking generating enzymatically active material that can be stored for months/years. Thus, and by means of monolithically integrated micro-optics elements, continuous enzymatic reactions can be spectrophotometrically monitored. Lipase, an enzyme with industrial significance for catalyzed transesterification, hydrolysis, and esterification reactions, is used to demonstrate the potential of the microplatforms as both a continuous biosensor and a microreactor for the synthesis of high value compounds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques*
  • Cross-Linking Reagents / chemistry*
  • Cross-Linking Reagents / metabolism
  • Crystallization
  • Lab-On-A-Chip Devices*
  • Lipase / chemistry*
  • Lipase / metabolism
  • Photons*

Substances

  • Cross-Linking Reagents
  • Lipase