Synthesis of a New Series of Sialylated Homo- and Heterovalent Glycoclusters by using Orthogonal Ligations

ChemistryOpen. 2016 Jul 22;5(5):477-484. doi: 10.1002/open.201600062. eCollection 2016 Oct.

Abstract

The synthesis of heteroglycoclusters (hGCs) is being subjected to rising interest, owing to their potential applications in glycobiology. In this paper, we report an efficient and straightforward convergent protocol based on orthogonal chemoselective ligations to prepare structurally well-defined cyclopeptide-based homo- and heterovalent glycoconjugates displaying 5-N-acetyl-neuraminic acid (Neu5Ac), galactose (Gal), and/or N-acetyl glucosamine (GlcNAc). We first used copper-catalyzed azide-alkyne cycloaddition and/or thiol-ene coupling to conjugate propargylated α-sialic acid 3, β-GlcNAc thiol 5, and β-Gal thiol 6 onto cyclopeptide scaffolds 7-9 to prepare tetravalent homoglycoclusters (10-12) and hGCs (13-14) with 2:2 combinations of sugars. In addition, we have demonstrated that 1,2-diethoxycyclobutene-3,4-dione can be used as a bivalent linker to prepare various octavalent hGCs (16, 19, and 20) in a controlled manner from these tetravalent structures.

Keywords: cyclopeptides; heteroglycoclusters; homoglycoclusters; multivalency; orthogonal ligations.