Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb2+ from water

J Hazard Mater. 2017 Feb 15;324(Pt B):168-177. doi: 10.1016/j.jhazmat.2016.10.046. Epub 2016 Oct 20.

Abstract

Amorphous titanium hydroxide and boron-doped (B-doped) sodium titanates hydrates were synthetized and used as adsorbents for the removal of Pb2+ from water. The use of sodium borohydride (NaBH4) and titanium(IV) isopropoxide (TTIP) as precursors permits a very easy synthesis of B-doped adsorbents at 298K. The new adsorbent materials were first chemically characterized (XRD, XPS, SEM, DRIFT and elemental analysis) and then tested in Pb2+ adsorption batch experiments, in order to define kinetics and equilibrium studies. The nature of interaction between such sorbent materials and Pb2+ was also well defined: besides a pure adsorption due to hydroxyl interaction functionalities, there is also an ionic exchange between Pb2+ and sodium ions even working at pH 4.4. Langmuir model presented the best fitting with a maximum adsorption capacity up to 385mg/g. The effect of solution pH and common ions (i.e. Na+, Ca2+ and Mg2+) onto Pb2+ sorption were also investigated. Finally, recovery was positively conducted using EDTA. Very efficient adsorption (>99.9%) was verified even using tap water spiked with traces of Pb2+ (50ppb).

Keywords: Adsorption; Ionic exchange; Metal removal; Pb(II); Titanium hydroxides.