Effect of ultrasonic vibration time on the Cu/Sn-Ag-Cu/Cu joint soldered by low-power-high-frequency ultrasonic-assisted reflow soldering

Ultrason Sonochem. 2017 Jan:34:616-625. doi: 10.1016/j.ultsonch.2016.06.039. Epub 2016 Jun 29.

Abstract

Techniques to improve solder joint reliability have been the recent research focus in the electronic packaging industry. In this study, Cu/SAC305/Cu solder joints were fabricated using a low-power high-frequency ultrasonic-assisted reflow soldering approach where non-ultrasonic-treated samples were served as control sample. The effect of ultrasonic vibration (USV) time (within 6s) on the solder joint properties was characterized systematically. Results showed that the solder matrix microstructure was refined at 1.5s of USV, but coarsen when the USV time reached 3s and above. The solder matrix hardness increased when the solder matrix was refined, but decreased when the solder matrix coarsened. The interfacial intermetallic compound (IMC) layer thickness was found to decrease with increasing USV time, except for the USV-treated sample with 1.5s. This is attributed to the insufficient USV time during the reflow stage and consequently accelerated the Cu dissolution at the joint interface during the post-ultrasonic reflow stage. All the USV-treated samples possessed higher shear strength than the control sample due to the USV-induced-degassing effect. The shear strength of the USV-treated sample with 6s was the lowest among the USV-treated samples due to the formation of plate-like Ag3Sn that may act as the crack initiation site.

Keywords: Lead-free; Mechanical properties; Microstructure; Reflow; Ultrasonic soldering; Vibration time.

Publication types

  • Research Support, Non-U.S. Gov't