Low power and type II errors in recent ophthalmology research

Can J Ophthalmol. 2016 Oct;51(5):368-372. doi: 10.1016/j.jcjo.2016.02.002. Epub 2016 Sep 3.

Abstract

Objective: To investigate the power of unpaired t tests in prospective, randomized controlled trials when these tests failed to detect a statistically significant difference and to determine the frequency of type II errors.

Design: Systematic review and meta-analysis.

Methods: We examined all prospective, randomized controlled trials published between 2010 and 2012 in 4 major ophthalmology journals (Archives of Ophthalmology, British Journal of Ophthalmology, Ophthalmology, and American Journal of Ophthalmology). Studies that used unpaired t tests were included. Power was calculated using the number of subjects in each group, standard deviations, and α = 0.05. The difference between control and experimental means was set to be (1) 20% and (2) 50% of the absolute value of the control's initial conditions. Power and Precision version 4.0 software was used to carry out calculations. Finally, the proportion of articles with type II errors was calculated. β = 0.3 was set as the largest acceptable value for the probability of type II errors.

Results: In total, 280 articles were screened. Final analysis included 50 prospective, randomized controlled trials using unpaired t tests. The median power of tests to detect a 50% difference between means was 0.9 and was the same for all 4 journals regardless of the statistical significance of the test. The median power of tests to detect a 20% difference between means ranged from 0.26 to 0.9 for the 4 journals. The median power of these tests to detect a 50% and 20% difference between means was 0.9 and 0.5 for tests that did not achieve statistical significance. A total of 14% and 57% of articles with negative unpaired t tests contained results with β > 0.3 when power was calculated for differences between means of 50% and 20%, respectively.

Conclusions: A large portion of studies demonstrate high probabilities of type II errors when detecting small differences between means. The power to detect small difference between means varies across journals. It is, therefore, worthwhile for authors to mention the minimum clinically important difference for individual studies. Journals can consider publishing statistical guidelines for authors to use. Day-to-day clinical decisions rely heavily on the evidence base formed by the plethora of studies available to clinicians. Prospective, randomized controlled clinical trials are highly regarded as a robust study and are used to make important clinical decisions that directly affect patient care. The quality of study designs and statistical methods in major clinical journals is improving overtime,1 and researchers and journals are being more attentive to statistical methodologies incorporated by studies. The results of well-designed ophthalmic studies with robust methodologies, therefore, have the ability to modify the ways in which diseases are managed.

Publication types

  • Meta-Analysis
  • Review
  • Systematic Review

MeSH terms

  • Biomedical Research / statistics & numerical data*
  • Data Interpretation, Statistical
  • Humans
  • Ophthalmology / statistics & numerical data*
  • Periodicals as Topic
  • Prospective Studies
  • Randomized Controlled Trials as Topic
  • Statistics as Topic*