Metal-Free Synthesis of meso-Aminoporphyrins through Reduction of meso-Azidoporphyrins Generated in Situ by Nucleophilic Substitution Reactions of meso-Bromoporphyrins

J Org Chem. 2016 Nov 18;81(22):11176-11184. doi: 10.1021/acs.joc.6b02159. Epub 2016 Nov 4.

Abstract

A facile and metal-free method for the preparation of free base meso-aminodiarylporphyrins from readily available meso-bromodiarylporphyrins is described. Simple treatment of meso-bromoporphyrins with sodium azide and sodium ascorbate in DMF affords the corresponding meso-aminoporphyrins in very good yields. This method involves the aromatic nucleophilic substitution (SNAr) of a bromo group with an azido group and the subsequent in situ reduction of the introduced azido group by sodium ascorbate. This amination reaction can be scaled up to gram scale without any decrease of the product yield. The amination reaction of free base meso-dibromoporphyrin affords a monoaminated product selectively, whereas that of the Ni(II) complex furnishes a diaminated product that is oxidized by air under ambient conditions but isolable as a trifluoroacetyl ester. Metal-insertion reactions of the obtained free base aminoporphyrins afford the corresponding metal complexes (Ni(II), Cu(II), Zn(II), and Pd(II)) all in good yields except the Pd(II) complex. Synthetic methods for the preparation of N-mono- or dialkylaminoporphyrins from the free base meso-aminoporphyrins have been also established.