Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels

Am J Physiol Heart Circ Physiol. 2016 Dec 1;311(6):H1437-H1444. doi: 10.1152/ajpheart.00465.2016. Epub 2016 Oct 7.

Abstract

Hydrogen sulfide (H2S) is a recently described gaseous vasodilator produced within the vasculature by the enzymes cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase. Previous data demonstrate that endothelial cells (EC) are the source of endogenous H2S production and are required for H2S-induced dilation. However, the signal transduction pathway activated by H2S within EC has not been elucidated. TRPV4 and large-conductance Ca2+-activated K channels (BK channels) are expressed in EC. H2S-induced dilation is inhibited by luminal administration of iberiotoxin and disruption of the endothelium. Calcium influx through TRPV4 may activate these endothelial BK channels (eBK). We hypothesized that H2S-mediated vasodilation involves activation of TRPV4 within the endothelium. In pressurized, phenylephrine-constricted mesenteric arteries, H2S elicited a dose-dependent vasodilation blocked by inhibition of TRPV4 channels (GSK2193874A, 300 nM). H2S (1 μM) increased TRPV4-dependent (1.8-fold) localized calcium events in EC of pressurized arteries loaded with fluo-4 and Oregon Green. In pressurized EC tubes, H2S (1 μM) and the TRPV4 activator, GSK101679A (30 nM), increased calcium events 1.8- and 1.5-fold, respectively. H2S-induced an iberiotoxin-sensitive outward current measured using whole cell patch-clamp techniques in freshly dispersed EC. H2S increased K+ currents from 10 to 30 pA/pF at +150 mV. Treatment with Na2S increased the level of sulfhydration of TRPV4 channels in aortic ECs. These results demonstrate that H2S-mediated vasodilation involves activation of TRPV4-dependent Ca2+ influx and BK channel activation within EC. Activation of TRPV4 channels appears to cause calcium events that result in the opening of eBK channels, endothelial hyperpolarization, and subsequent vasodilation.

Keywords: BK channel; TRPV4; endothelium; hydrogen sulfide; vasodilation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Endothelial Cells / drug effects*
  • Endothelial Cells / metabolism
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / metabolism
  • Gasotransmitters / pharmacology*
  • Hydrogen Sulfide / pharmacology*
  • Large-Conductance Calcium-Activated Potassium Channels / drug effects*
  • Large-Conductance Calcium-Activated Potassium Channels / metabolism
  • Leucine / analogs & derivatives
  • Leucine / pharmacology
  • Male
  • Mesenteric Arteries / drug effects*
  • Mesenteric Arteries / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Sulfonamides / pharmacology
  • TRPV Cation Channels / agonists
  • TRPV Cation Channels / antagonists & inhibitors
  • TRPV Cation Channels / metabolism*
  • Vasodilation / drug effects*

Substances

  • Gasotransmitters
  • Large-Conductance Calcium-Activated Potassium Channels
  • N-(1-((4-(2-(((2,4-dichlorophenyl)sulfonyl)amino)-3-hydroxypropanoyl)-1-piperazinyl)carbonyl)-3-methylbutyl)-1-benzothiophene-2-carboxamide
  • Sulfonamides
  • TRPV Cation Channels
  • Trpv4 protein, rat
  • Leucine
  • Hydrogen Sulfide