MoS2 /Rubrene van der Waals Heterostructure: Toward Ambipolar Field-Effect Transistors and Inverter Circuits

Small. 2017 Jan;13(2). doi: 10.1002/smll.201602558. Epub 2016 Oct 20.

Abstract

2D transition metal dichalcogenides are promising channel materials for the next-generation electronic device. Here, vertically 2D heterostructures, so called van der Waals solids, are constructed using inorganic molybdenum sulfide (MoS2 ) few layers and organic crystal - 5,6,11,12-tetraphenylnaphthacene (rubrene). In this work, ambipolar field-effect transistors are successfully achieved based on MoS2 and rubrene crystals with the well balanced electron and hole mobilities of 1.27 and 0.36 cm2 V-1 s-1 , respectively. The ambipolar behavior is explained based on the band alignment of MoS2 and rubrene. Furthermore, being a building block, the MoS2 /rubrene ambipolar transistors are used to fabricate CMOS (complementary metal oxide semiconductor) inverters that show good performance with a gain of 2.3 at a switching threshold voltage of -26 V. This work paves a way to the novel organic/inorganic ultrathin heterostructure based flexible electronics and optoelectronic devices.

Keywords: 2D materials; ambipolar; field-effect transistors; heterostructures; inverter circuits.