A Universal Moiré Effect and Application in X-Ray Phase-Contrast Imaging

Nat Phys. 2016:12:830-834. doi: 10.1038/nphys3734. Epub 2016 Apr 25.

Abstract

A moiré pattern is created by superimposing two black-and-white or gray-scale patterns of regular geometry, such as two sets of evenly spaced lines. We observed an analogous effect between two transparent phase masks in a light beam which occurs at a distance. This phase moiré effect and the classic moiré effect are shown to be the two ends of a continuous spectrum. The phase moiré effect allows the detection of sub-resolution intensity or phase patterns with a transparent screen. When applied to x-ray imaging, it enables a polychromatic far-field interferometer (PFI) without absorption gratings. X-ray interferometry can non-invasively detect refractive index variations inside an object1-10. Current bench-top interferometers operate in the near field with limitations in sensitivity and x-ray dose efficiency2, 5, 7-10. The universal moiré effect helps overcome these limitations and obviates the need to make hard x-ray absorption gratings of sub-micron periods.