Proprotein convertases generate a highly functional heterodimeric form of thymic stromal lymphopoietin in humans

J Allergy Clin Immunol. 2017 May;139(5):1559-1567.e8. doi: 10.1016/j.jaci.2016.08.040. Epub 2016 Oct 12.

Abstract

Rationale: Thymic stromal lymphopoietin (TSLP) is known to be elevated and truncated in nasal polyps (NPs) of patients with chronic rhinosinusitis and might play a significant role in type 2 inflammation in this disease. However, neither the structure nor the role of the truncated products of TSLP has been studied.

Objective: We sought to investigate the mechanisms of truncation of TSLP in NPs and the function of the truncated products.

Methods: We incubated recombinant human TSLP with NP extracts, and determined the protein sequence of the truncated forms of TSLP using Edman protein sequencing and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. We investigated the functional activity of truncated TSLP using a PBMC-based bioassay.

Results: Edman sequencing and mass spectrometry results indicated that NP extracts generated 2 major truncated products, TSLP (residues 29-124) and TSLP (131-159). Interestingly, these 2 products remained linked with disulfide bonds and presented as a dimerized form, TSLP (29-124 + 131-159). We identified that members of the proprotein convertase were rate-limiting enzymes in the truncation of TSLP between residues 130 and 131 and generated a heterodimeric unstable metabolite TSLP (29-130 + 131-159). Carboxypeptidase N immediately digested 6 amino acids from the C terminus of the longer subunit of TSLP to generate a stable dimerized form, TSLP (29-124 + 131-159), in NPs. These truncations were homeostatic but primate-specific events. A metabolite TSLP (29-130 + 131-159) strongly activated myeloid dendritic cells and group 2 innate lymphoid cells compared with mature TSLP.

Conclusions: Posttranslational modifications control the functional activity of TSLP in humans and overproduction of TSLP may be a key trigger for the amplification of type 2 inflammation in diseases.

Keywords: Carboxypeptidase; chronic rhinosinusitis; dendritic cells; group 2 innate lymphoid cells; nasal polyps; posttranslational modification; proprotein convertases; thymic stromal lymphopoietin.

MeSH terms

  • Cells, Cultured
  • Cytokines* / pharmacology
  • Humans
  • Leukocytes, Mononuclear / drug effects
  • Leukocytes, Mononuclear / immunology
  • Nasal Polyps / immunology*
  • Proprotein Convertase 1* / pharmacology
  • Protein Processing, Post-Translational
  • Recombinant Proteins / pharmacology
  • Thymic Stromal Lymphopoietin

Substances

  • Cytokines
  • Recombinant Proteins
  • PCSK1 protein, human
  • Proprotein Convertase 1
  • Thymic Stromal Lymphopoietin