Porous 3D implants of degradable poly-3-hydroxybutyrate used to enhance regeneration of rat cranial defect

J Biomed Mater Res A. 2017 Feb;105(2):566-577. doi: 10.1002/jbm.a.35933. Epub 2016 Nov 7.

Abstract

The study describes preparation and testing of porous 3D implants of natural degradable polymer of 3-hydroxybutyric acid P(3HB) for regeneration of bone tissue defects. The ability of the P(3HB) implants to favor attachment and facilitate proliferation and directed differentiation of mesenchymal stem cells (MSCs) was studied in the culture of MSCs isolated from bone marrow and adipose tissue. Tissue-engineered hybrid systems (grafts) constructed using P(3HB) and P(3HB) in combination with osteoblasts were used in experiments on laboratory animals (n = 48) with bone defect model. The defect model (5 mm in diameter) was created in the rat parietal bone, and filling of the defect by the new bone tissue was monitored in the groups of animals with P(3HB) implants, with commercial material, and without implants (negative control). Computed tomography (CT) and histologic examination showed that after 120 days, in the group with the osteoblast-seeded P(3HB) implants, the defect was completely closed; in the group with the cell-free P(3HB) implants, the remaining defect was no more than 10% of the initial one (0.5 mm); in both the negative and positive controls, the size of the defect was about 1.0-1.2 mm. These results suggest that P(3HB) has good potential as osteoplastic material for reconstructive osteogenesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 566-577, 2017.

Keywords: 3D implants; MSC differentiation; grafts for osteogenesis; poly-3-hydroxybutyrate; regeneration of defect cranial.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorbable Implants*
  • Animals
  • Bone Regeneration / drug effects*
  • Bone Substitutes* / chemistry
  • Bone Substitutes* / pharmacology
  • Hydroxybutyrates* / chemistry
  • Hydroxybutyrates* / pharmacology
  • Polyesters* / chemistry
  • Polyesters* / pharmacology
  • Porosity
  • Rats
  • Rats, Wistar
  • Skull* / injuries
  • Skull* / metabolism
  • Skull* / pathology

Substances

  • Bone Substitutes
  • Hydroxybutyrates
  • Polyesters
  • poly-beta-hydroxybutyrate