Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications

Cell Death Differ. 2016 Dec;23(12):1906-1918. doi: 10.1038/cdd.2016.94. Epub 2016 Oct 14.

Abstract

Regardless of its etiology, once septic shock is established, survival rates drop by 7.6% for every hour antibiotic therapy is delayed. The early identification of the cause of infection and prognostic stratification of patients with sepsis are therefore important clinical priorities. Biomarkers are potentially valuable clinical tools in this context, but to date, no single biomarker has been shown to perform adequately. Hence, in an effort to discover novel diagnostic and prognostic markers in sepsis, new genomic approaches have been employed. As a result, a number of small regulatory molecules called microRNAs (miRNAs) have been identified as key regulators of the inflammatory response. Although deregulated miRNA expression is increasingly well described, the pathophysiological roles of these molecules in sepsis have yet to be fully defined. Moreover, non-human miRNAs, including two Kaposi Sarcoma herpesvirus-encoded miRNAs, are implicated in sepsis and may drive enhanced secretion of pro-inflammatory and anti-inflammatory cytokines exacerbating sepsis. A better understanding of the mechanism of action of both cellular and viral miRNAs, and their interactions with immune and inflammatory cascades, may therefore identify novel therapeutic targets in sepsis and make biomarker-guided therapy a realistic prospect.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Clinical Trials as Topic
  • Humans
  • MicroRNAs / metabolism*
  • Molecular Mimicry
  • Sepsis / genetics*
  • Sepsis / immunology
  • Viruses / genetics*

Substances

  • Biomarkers
  • MicroRNAs