Colloidal Precursor-Induced Growth of Ultra-Even CH3NH3PbI3 for High-Performance Paintable Carbon-Based Perovskite Solar Cells

ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30184-30192. doi: 10.1021/acsami.6b09925. Epub 2016 Oct 25.

Abstract

Carbon-based hole transport material (HTM)-free perovskite solar cells (PSCs) have attracted intense attention due to their relatively high stability. However, their power conversion efficiency (PCE) is still low, especially for the simplest paintable carbon-based PSCs (C-PSCs), whose performance is greatly limited by poor contact at the perovskite/carbon interface. To enhance interface contact, it is important to fabricate an even-surface perovskite layer in a porous scaffold, which is not usually feasible due to roughness of the crystal precursor. Herein, colloidal engineering is applied to replace the traditional crystal precursor with a colloidal precursor, in which a small amount of dimethyl sulfoxide (DMSO) is added into the conventional PbI2 dimethylformamide (DMF) solution. After deposition, PbI2(DMSO) adduct colloids (which are approximately tens of nanometers in size) are stabilized and dispersed in DMF to form a colloidal film. Compared with PbI2 and PbI2(DMSO) adduct crystal precursors deposited from pure DMF and DMSO solvents, respectively, the PbI2(DMSO) adduct colloidal precursor is highly mobile and flexible, allowing an ultra-even surface to be obtained in a TiO2 porous scaffold. Furthermore, this ultra-even surface is well-maintained after chemical conversion to CH3NH3PbI3 in a CH3NH3I solution. As a result, the contact at the CH3NH3PbI3/carbon interface is significantly enhanced, which largely boosts the fill factor and PCE of C-PSCs. Impressively, the achieved champion PCE of 14.58% is among the highest reported for C-PSCs.

Keywords: carbon-based perovskite solar cells; dimethyl sulfoxide; dimethylformamide; hole transport material-free; interface contact.