Regeneration of soapnut tree through somatic embryogenesis and assessment of genetic fidelity through ISSR and RAPD markers

Physiol Mol Biol Plants. 2016 Jul;22(3):381-389. doi: 10.1007/s12298-016-0364-0. Epub 2016 Jul 1.

Abstract

Somatic embryogenic system was developed in Sapindus mukorossi Gaertn. using rachis as explants from a mature tree. Explants showed callus initiation on Murashige and Skoog medium supplemented with TDZ (1-Phenyl-3-(1, 2, 3-thiadiazol-5-yl) urea), zeatin or 6-benzylaminopurine. Induction of somatic embryogenesis was achieved on both MS basal medium and MS medium supplemented with 8.88 µM 6-benzylaminopurine. Hundred percent embryogenesis was observed on MS medium supplemented with 8.88 µM 6-benzylaminopurine with maximum intensity of embryogenesis (51.92 ± 0.40 a). Maximum maturation of somatic embryos (92.86 ± 0.34 a) was observed on induction medium supplemented with 0.0378 µM abscisic and treated for 21 days. Germination of somatic embryos was maximum (77.33 ± 0.58 a) on MS medium supplemented with 8.88 µM 6-benzylaminopurine. In vitro raised plantlets were hardened, acclimatized and transferred to the field. Survival frequency of plantlets was 80 % in field conditions. The genetic fidelity of in vitro regenerated plants was also evaluated and compared with mother plant using random amplified polymorphic DNA and inter simple sequence repeat. Both markers showed similarity in molecular profile of mother plant and in vitro regenerated plants.

Keywords: Genetic fidelity; Glutamine; Molecular markers; Rachis; Sapindus mukorossi Gaertn.; Somatic embryogenesis.