Waste or substrate for metal hyperaccumulating plants - The potential of phytomining on waste incineration bottom ash

Sci Total Environ. 2017 Jan 1:575:910-918. doi: 10.1016/j.scitotenv.2016.09.144. Epub 2016 Oct 7.

Abstract

Phytomining could represent an innovative low-cost technology for the selective recovery of valuable trace elements from secondary resources. In this context the potential of phytomining from waste incineration bottom ash was tested in a pot experiment. Fresh bottom ash was acidified, leached to reduce salinity and amended with organic material to obtain a suitable substrate for plant growth. Two hyperaccumulator species, Alyssum serpyllifolium subsp. lusitanicum and Sedum plumbizincicola as well as three metal tolerant species, Brassica napus, B. juncea and Nicotiana tabacum were tested for their phytomining potential on the pre-treated and amended bottom ashes from municipal solid waste and hazardous waste incineration. The hyperaccumulators had severe difficulties to establish on the bottom ash and to produce sufficient biomass, likely due to salinity and Cu toxicity. Nevertheless, concentrations of Ni in A. serpyllifolium and Zn in S. plumbizincicola were high, but total metal removal was limited by the low biomass production and was clearly less than on metalliferous soils. The Brassica species proved to be more tolerant to salinity and high Cu concentrations and produced considerably higher biomass, but total metal removal was limited by rather low shoot concentrations. The observed limitations of the phytomining process along with currently low market prices of Ni and Zn suggest that further optimisation of the process is required in order to make phytomining economically feasible on the tested waste incineration bottom ashes.

Keywords: Alyssum; Ni; Phytoextraction; Sedum; Waste incineration residues; Zn.