Nanotube-terminated zigzag edges of phosphorene formed by self-rolling reconstruction

Nanoscale. 2016 Oct 20;8(41):17940-17946. doi: 10.1039/c6nr06201f.

Abstract

The edge atomic configuration often plays an important role in dictating the properties of finite-sized two-dimensional (2D) materials. By performing ab initio calculations, we identify a highly stable zigzag edge of phosphorene, which is the most stable one among all the considered edges. Surprisingly, this highly stable edge exhibits a novel nanotube-like structure, which is topologically distinctively different from any previously reported edge reconstruction. We further show that this new edge type can form easily, with an energy barrier of only 0.234 eV. It may be the dominant edge type at room temperature under vacuum conditions or even under low hydrogen gas pressure. The calculated band structure reveals that the reconstructed edge possesses a bandgap of 1.23 eV. It is expected that this newly found edge structure may stimulate more studies in uncovering other novel edge types and further exploring their practical applications.