Hepatocyte growth factor promotes proliferation, invasion, and metastasis of myeloid leukemia cells through PI3K-AKT and MAPK/ERK signaling pathway

Am J Transl Res. 2016 Sep 15;8(9):3630-3644. eCollection 2016.

Abstract

This study aims to investigate effects of HGF expression on biological behaviors of Kasumi-1 and HL60. Expression of HGF and c-Met gene were detected using qRT-PCR. Short hairpin RNA (shRNA) was used to reduce HGF expression. Silencing effect of shRNA was verified by qRT-PCR and western blot. Cell reproductive capacity, cell clonality and cell cycle (apoptosis) were detected by CCK-8, clone formation, flow cytometry (FCM), respectively. Cell adhesion, cell invasion ability and cell proliferation were also examined. Changes of PI3K-AKT, MAPK/ERK signaling factors were detected by western blot. HGF and c-Met expression in first-vist AML group was significantly higher than in AML-relief and normal control group. HGF shRNA can inhibit cell proliferation, inhibit cloning ability. Compared with control group, apoptosis ratios of Kasumi-1 and HL60 cell in interference groups were significantly higher. After shRNA interference, the number of adherent cells and transmembrane cells were significantly decreased compared with control group. Meanwhile, shRNA also down-regulated Bad, Bcl-XL, Bcl-2, CDK1, Cyclin B, MMP2, MMP9, and up-regulated cleaved caspase9, cleaved caspase3, cleaved PARP, Bax, and P21. Moreover, phosphorylated c-Met, AKT, Erk, and mTOR were also reduced. In conclusion, HGF and c-Met gene highly expressed among first-visit AML patients, but decreased after relief treatment. HGF may promote proliferation, invasion, and metastasis of AML cells through PI3K-AKT and MAPK/ERK signaling pathway. Therefore, proliferation and invasion ability of AML cell can be inhibited by down-regulating HGF gene to retardate cell in G2/M stage.

Keywords: AML; HGF; MAPK/Erk; PI3K-AKT; c-Met.