Exploring the self-assembly and energy transfer of dynamic supramolecular iridium-porphyrin systems

Dalton Trans. 2016 Nov 1;45(43):17195-17205. doi: 10.1039/c6dt02619b.

Abstract

We present the first examples of dynamic supramolecular systems composed of cyclometalated Ir(iii) complexes of the form of [Ir(C^N)2(N^N)]PF6 (where C^N is mesppy = 2-phenyl-4-mesitylpyridinato and dFmesppy = 2-(4,6-difluorophenyl)-4-mesitylpyridinato and N^N is 4,4':2',2'':4'',4'''-quaterpyridine, qpy) and zinc tetraphenylporphyrin (ZnTPP), assembled through non-covalent interactions between the distal pyridine moieties of the qpy ligand located on the iridium complex and the zinc of the ZnTPP. The assemblies have been comprehensively characterized by a series of analytical techniques (1H NMR titration experiments, 2D COSY and HETCOR NMR spectra and low temperature 1H NMR spectroscopy) and the crystal structures have been elucidated by X-ray diffraction. The optoelectronic properties of the assemblies and the electronic interaction between the iridium and porphyrin chromophoric units have been explored with detailed photophysical measurements, supported by time-dependent density functional theory (TD-DFT) calculations.