Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination

Ultrason Sonochem. 2017 Mar;35(Pt A):233-242. doi: 10.1016/j.ultsonch.2016.09.024. Epub 2016 Sep 28.

Abstract

The WO3 and stratified WO3/TiO2 thin films are successfully prepared by the spray pyrolysis method. The structural, morphological, compositional and photoelectrocatalytic properties of WO3 and stratified WO3/TiO2 thin films are studied. XRD analysis confirms that films are polycrystalline with monoclinic and tetragonal crystal structures for WO3 and TiO2 respectively. The SEM images clearly show 3D sheeted porous structure of the as-prepared TiO2 forms on WO3 in stratified WO3/TiO2 samples. The synthesized photoelectrodes was used as catalyst for photoelectrocatalytic degradation of oxalic acid in aqueous medium. The rate constant (k) was evaluated as a function of the initial concentration of species. A significant decrease in concentrations of organic species was observed from COD analysis. The photoelectrocatalytic degradation effect is relatively higher in the case of the stratified WO3/TiO2 than WO3 thin film photoelectrode in the degradation of oxalic acid and 83% removal efficiency of oxalic acid is obtained after 180min. Based on the obtained experimental data, the possible photoelectrocatalytic reaction mechanism was proposed. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is the promising material for removing of water pollutants.

Keywords: Chemical oxygen demand (COD); Oxalic acid (OA); Stratified WO(3)/TiO(2) thin film.