Aldo-keto reductase 1C1 induced by interleukin-1β mediates the invasive potential and drug resistance of metastatic bladder cancer cells

Sci Rep. 2016 Oct 4:6:34625. doi: 10.1038/srep34625.

Abstract

In treating bladder cancer, determining the molecular mechanisms of tumor invasion, metastasis, and drug resistance are urgent to improving long-term patient survival. One of the metabolic enzymes, aldo-keto reductase 1C1 (AKR1C1), plays an essential role in cancer invasion/metastasis and chemoresistance. In orthotopic xenograft models of a human bladder cancer cell line, UM-UC-3, metastatic sublines were established from tumors in the liver, lung, and bone. These cells possessed elevated levels of EMT-associated markers, such as Snail, Slug, or CD44, and exhibited enhanced invasion. By microarray analysis, AKR1C1 was found to be up-regulated in metastatic lesions, which was verified in metastatic human bladder cancer specimens. Decreased invasion caused by AKR1C1 knockdown suggests a novel role of AKR1C1 in cancer invasion, which is probably due to the regulation of Rac1, Src, or Akt. An inflammatory cytokine, interleukin-1β, was found to increase AKR1C1 in bladder cancer cell lines. One particular non-steroidal anti-inflammatory drug, flufenamic acid, antagonized AKR1C1 and decreased the cisplatin-resistance and invasion potential of metastatic sublines. These data uncover the crucial role of AKR1C1 in regulating both metastasis and drug resistance; as a result, AKR1C1 should be a potent molecular target in invasive bladder cancer treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 20-Hydroxysteroid Dehydrogenases / genetics
  • 20-Hydroxysteroid Dehydrogenases / metabolism*
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm*
  • Epithelial-Mesenchymal Transition*
  • Humans
  • Interleukin-1beta / genetics
  • Interleukin-1beta / metabolism*
  • Neoplasm Invasiveness
  • Neoplasm Metastasis
  • Urinary Bladder Neoplasms / drug therapy
  • Urinary Bladder Neoplasms / genetics
  • Urinary Bladder Neoplasms / metabolism*
  • Urinary Bladder Neoplasms / pathology

Substances

  • IL1B protein, human
  • Interleukin-1beta
  • 20-Hydroxysteroid Dehydrogenases
  • 3 alpha-beta, 20 beta-hydroxysteroid dehydrogenase