High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control

Phys Rev Lett. 2016 Sep 16;117(12):124801. doi: 10.1103/PhysRevLett.117.124801. Epub 2016 Sep 16.

Abstract

By designing a structured gas density profile between the dual-stage gas jets to manipulate electron seeding and energy chirp reversal for compressing the energy spread, we have experimentally produced high-brightness high-energy electron beams from a cascaded laser wakefield accelerator with peak energies in the range of 200-600 MeV, 0.4%-1.2% rms energy spread, 10-80 pC charge, and ∼0.2 mrad rms divergence. The maximum six-dimensional brightness B_{6D,n} is estimated as ∼6.5×10^{15} A/m^{2}/0.1%, which is very close to the typical brightness of e beams from state-of-the-art linac drivers. These high-brightness high-energy e beams may lead to the realization of compact monoenergetic gamma-ray and intense coherent x-ray radiation sources.