A Convenient Ultraviolet Irradiation Technique for Synthesis of Antibacterial Ag-Pal Nanocomposite

Nanoscale Res Lett. 2016 Dec;11(1):431. doi: 10.1186/s11671-016-1643-y. Epub 2016 Sep 27.

Abstract

In the present work, palygorskite (Pal) was initially subjected to an ion-exchange reaction with silver ions (Pal-Ag(+)). Subsequently, Ag-Pal nanocomposites were assembled by a convenient ultraviolet irradiation technique, using carbon dots (CDs) derived from wool fiber as the reducing agent. The obtained nanocomposites were characterized by powder X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy. The XRD patterns and UV-vis absorption spectra confirmed the formation of the Ag nanoparticles (NPs). Meanwhile, the TEM images showed that the Ag NPs, which exhibited sizes in the range of 3-7 nm, were located on the surface of the Pal nanofiber structures. Furthermore, the antibacterial activity of the nanocomposites was evaluated against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria by applying the disc diffusion method and minimum inhibitory concentration test. Owing to their good antibacterial properties, the Ag-Pal nanocomposites are considered to be a promising bactericide with great potential applications.

Keywords: Ag NPs; Antibacterial activities; Carbon dots; Nanocomposite; Palygorskite.