l-α-Phosphatidylglycerol Chlorohydrins as Potential Biomarkers for Chlorine Gas Exposure

Anal Chem. 2016 Oct 18;88(20):9972-9979. doi: 10.1021/acs.analchem.6b01896. Epub 2016 Oct 6.

Abstract

Chlorine is a widely available toxic chemical that has been repeatedly used in armed conflict globally. The Organization for the Prohibition of Chemical Weapons (OPCW) have on numerous occasions found "compelling confirmation" that chlorine gas has been used against civilians in northern Syria. However, currently, there are no analytical methods available to unambiguously prove chlorine gas exposure. In this study, we describe the screening for chlorinated biomolecules by the use of mass isotope ratio filters followed by the identification of two biomarkers present in bronchoalveolar lavage fluid (BALF) from chlorine gas exposed mice. The relevance of these markers for human exposure was verified by their presence in in vitro chlorinated human BALF. The biomarkers were detectable for 72 h after exposure and were absent in nonexposed control animals. Furthermore, the biomarkers were not detected in humans diagnosed with chronic respiratory diseases. The potential chlorine specific markers were all chlorohydrins of unsaturated pulmonary surfactant phospholipids; phosphatidylglycerols, and phosphatidylcholines. Mass spectrometry fragmentation characteristics were favorable for the phosphatidylglycerol chlorohydrins, and they were therefore proposed as the best biomarker candidates.