Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions

Acc Chem Res. 2016 Oct 18;49(10):2316-2327. doi: 10.1021/acs.accounts.6b00293. Epub 2016 Sep 26.

Abstract

Photoredox catalysis has emerged as a powerful tool for the utilization of visible light to drive chemical reactions between organic molecules that exhibit two rather ubiquitous properties: colorlessness and redox-activity. The photocatalyst, however, requires significant absorption in the visible spectrum and reversible redox activity. This very general framework has led to the development of several new modes of reactivity based on electron and energy transfer steps between photoexcited catalyst states and various organic molecules. In the past years, major effort has been devoted to photoredox-catalytic aromatic substitutions involving an initial reductive activation of various aryl electrophiles by the photocatalyst, which opens a new entry into selective arene functionalizations within organic synthesis endeavors. This, however, has led to a unilateral emphasis of synthetic developments including catalyst modifications, substrate scope studies, and combinations with other chemical processes. This Account summarizes recent reports of new protocols for the synthesis of aromatic esters, thioethers, boronates, sulfonates, heterobiaryls, deuteroarenes, and other functionalized arenes under mild photoredox conditions with organic dyes. On the other hand, mechanistic studies were largely neglected. This Account emphasizes the most relevant experiments and techniques, which can greatly assist in the exploration of the mechanistic foundation of aromatic photoredox substitutions and the design of new chemical reactivities. The nature and physicochemical properties of the employed organic dyes, the control of its acid-base chemistry, the choice of the irradiation sources, and the concentrations of substrates and dyes are demonstrated to decisively affect the activity of organic photocatalysts, the chemo- and regioselectivities of reactions, and the operating mechanisms. Several methods of distinction between photocatalytic and radical chain processes are being discussed such as the determination of quantum yields by conventional actinometric studies or modern photon counter devices. Careful analyses of key thermodynamic and kinetic data of the single electron transfer steps involved in aromatic photoredox substitutions by experimental and theoretical techniques are being exemplified with recent examples from the literature including the determination of redox potentials by DFT and CV, fluorescence quenching studies, and transient absorption/emission spectroscopy. This Account provides the uninitiated reader with an overview of the potential of organic photoredox catalysis for aromatic substitution reactions and encourages the practitioners to consult highly instructive synthetic, mechanistic, theoretical, and spectroscopic tools that are available in research laboratories.

Publication types

  • Research Support, Non-U.S. Gov't