Hypoxia and inflammatory bowel disease

Microbes Infect. 2017 Mar;19(3):210-221. doi: 10.1016/j.micinf.2016.09.004. Epub 2016 Sep 20.

Abstract

Inflammatory bowel disease (IBD) is a general term to describe inflammatory diseases of the gastrointestinal tract such as Crohn's disease and ulcerative colitis. IBD affects approximately 1 in 200 individuals and exerts a significant health and quality of life burden on patients. Surgical intervention can be curative in ulcerative colitis but there is currently no cure for Crohn's disease. Since this is the case, and the fact that patients are often diagnosed at a young age, IBD exerts a significant financial burden on the health care system, and society as a whole. The underlying pathology of IBD is complex and involves a combination of genetic, environmental and microbial factors. Regardless of the underlying causes of the condition, this disease is universally characterized by disruption to the protective epithelial barrier separating the intestinal lumen above from the mucosal immune system below. Once this barrier becomes compromised a sequence of events ensues, that can occur in repetitive cycles to ensure long-term and serious damage to the gut. The role of hypoxia and hypoxia-dependent signalling pathways are increasingly appreciated to play a role in the physiology and pathophysiology of the intestine. The intestinal epithelium normally exists in a state of physiological hypoxia, with additional tissue hypoxia a feature of active inflammatory disease. Furthermore, recent pre-clinical animal studies have clearly supported the rationale for pharmacologically manipulating the oxygen-sensitive hypoxia-inducible factor (HIF) pathway in models of IBD. Thus, this review will discuss the contribution of hypoxia sensitive pathways in the pathology of IBD. Finally we will discuss the emerging evidence for manipulation of hypoxia-sensitive pathways in the treatment of IBD.

Keywords: Colitis; Crohn's disease; Hypoxia; Hypoxia inducible factor; Inflammatory bowel disease; Prolyl hydroxylase inhibitors.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Hypoxia / complications*
  • Hypoxia / physiopathology*
  • Inflammatory Bowel Diseases / etiology*
  • Inflammatory Bowel Diseases / physiopathology*
  • Inflammatory Bowel Diseases / therapy