Terahertz polarization spectroscopy in the near-field zone of a sub-wavelength-scale metal slit

Opt Express. 2016 Sep 19;24(19):21276-85. doi: 10.1364/OE.24.021276.

Abstract

Time-domain spectroscopy is used to probe the polarization dependence of the terahertz-frequency absorption of α-lactose molecules in the near-field vicinity of a sub-wavelength-scale metal slit. The experimental result finds that the 0.53-THz absorption of this material has an unexpected polarization dependence, strongly coupled to the slit orientation; in particular, the electric wave in parallel polarization exhibits even complete vanishing of the otherwise resonant strong absorption. The physics behind this phenomena may be explained based on the Bethe's sub-wavelength diffraction: the electric field that is measured in the far field, but diffracted from a sub-wavelength-scale metal aperture, originates from solely magnetic dipole radiation and not from the electric dipole radiation, thus showing no electrically-coupled material response.