Multilevel programming in Cu/NiO y /NiO x /Pt unipolar resistive switching devices

Nanotechnology. 2016 Oct 28;27(43):435701. doi: 10.1088/0957-4484/27/43/435701. Epub 2016 Sep 21.

Abstract

The application of a NiO y /NiO x bilayer in resistive switching (RS) devices with x > y was studied for its ability to achieve reliable multilevel cell (MLC) characteristics. A sharp change in resistance brought about by sweeping the voltage, along with an improved on/off ratio (>10(3)) and endurance (10(4)) were achieved in the bilayer structure as compared to the single NiO x layer devices. Moreover, it was found that nonvolatile and stable resistance levels, especially the multiple low-resistance states of Cu/NiO y /NiO x /Pt memory devices, could be controlled by varying the compliance current. All the multilevel resistance states of the Cu/NiO y /NiO x /Pt bilayer devices were stable for up to 500 consecutive dc switching cycles, as compared to the Cu/NiO x /Pt single layer devices. The temperature-dependent variation of the high and low resistance states of both the bilayer and single layer devices was further investigated to elucidate the charge conduction mechanism. Finally, based on a detailed analysis of the experimental results, comparisons of the possible models for RS in bilayer and single layer memory devices have also been discussed.