Reactivity of an FeIV-Oxo Complex with Protons and Oxidants

J Am Chem Soc. 2016 Oct 12;138(40):13143-13146. doi: 10.1021/jacs.6b07633. Epub 2016 Sep 30.

Abstract

High-valent Fe-OH species are often invoked as key intermediates but have only been observed in Compound II of cytochrome P450s. To further address the properties of non-heme FeIV-OH complexes, we demonstrate the reversible protonation of a synthetic FeIV-oxo species containing a tris-urea tripodal ligand. The same protonated FeIV-oxo species can be prepared via oxidation, suggesting that a putative FeV-oxo species was initially generated. Computational, Mössbauer, XAS, and NRVS studies indicate that protonation of the FeIV-oxo complex most likely occurs on the tripodal ligand, which undergoes a structural change that results in the formation of a new intramolecular H-bond with the oxido ligand that aids in stabilizing the protonated adduct. We suggest that similar protonated high-valent Fe-oxo species may occur in the active sites of proteins. This finding further argues for caution when assigning unverified high-valent Fe-OH species to mechanisms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't