Mobility versus Alignment of a Semiconducting π-Extended Discotic Liquid-Crystalline Triindole

ACS Appl Mater Interfaces. 2016 Oct 12;8(40):26964-26971. doi: 10.1021/acsami.6b06241. Epub 2016 Sep 28.

Abstract

The p-type semiconducting properties of a triphenylene-fused triindole mesogen, have been studied by applying two complementary methods which have different alignment requirements. The attachment of only three flexible alkyl chains to the nitrogen atoms of this π-extended core is sufficient to induce columnar mesomorphism. High hole mobility values (0.65 cm2 V-1 s-1) have been estimated by space-charge limited current (SCLC) measurements in a diode-like structure which are easily prepared from the melt, rendering this material a good candidate for OPVs and OLEDs devices. The mobility predicted theoretically via a hole-hopping mechanism is in very good agreement with the experimental values determined at the SCLC regime. On the other hand the hole mobility determined on solution processed thin film transistors (OFETs) is significantly lower, which can be rationalized by the high tendency of these large molecules to align on surfaces with their extended π-conjugated core parallel to the substrate as demonstrated by SERS. Despite the differences obtained with the two methods, the acceptable performance found on OFETs fabricated by simple drop-casting processing of such an enlarged aromatic core is remarkable and suggests facile hopping between neighboring molecular columns owing to the large conducting/isolating ratio found in this discotic compound.

Keywords: OFETS; SCLC measurements; discotic liquid-crystals; hole mobility; organic semiconductors.