In Situ Growth of Free-Standing All Metal Oxide Asymmetric Supercapacitor

ACS Appl Mater Interfaces. 2016 Oct 5;8(39):26019-26029. doi: 10.1021/acsami.6b08037. Epub 2016 Sep 26.

Abstract

Metal oxides have attracted renewed interest in applications as energy storage and conversion devices. Here, a new design is reported to acquire an asymmetric supercapacitor assembled by all free-standing metal oxides. The positive electrode is made of 3D NiO open porous nanoribbons network on nickel foam and the negative electrode is composed of SnO2/MnO2 nanoflakes grown on carbon cloth (CC) substrate. The combination of two metal oxide electrodes which replaced the traditional group of carbon materials together with metal oxide has achieved a higher energy density. The self-supported 3D NiO nanoribbons network demonstrates a high specific capacitance and better cycle performance without obvious mechanical deformation despite of undergoing harsh bulk redox reactions. The SnO2/MnO2 nanoflakes as the pseudocapacitive electrode exhibit a wide range of voltage window (-1 to 1 V), which is conducive to electrochemical energy storage. The (CC/SnO2/MnO2)(-)//(NiO/Ni foam)(+) asymmetric supercapacitor device delivers an energy density of 64.4 Wh kg-1 (at a power density of 250 W kg-1) and two devices in series are applied to light up 24 red LEDs for about 60 s. The outstanding electrochemical properties of the device hold great promise for long-life, high-energy, and high-power energy storage/conversion applications.

Keywords: NiO nanoribbons; SnO2/MnO2 nanoflakes; asymmetric supercapacitor device; hydrothermal method; metal oxides.