Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta

Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10968-73. doi: 10.1073/pnas.1608454113. Epub 2016 Sep 12.

Abstract

Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.

Keywords: bioconversion; biodegradation; cellulase; decomposition; lignocellulose.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cluster Analysis
  • Coriolaceae / enzymology
  • Coriolaceae / genetics*
  • Coriolaceae / growth & development
  • Gene Expression Regulation, Fungal*
  • Genes, Fungal
  • Lignin
  • Mycelium / physiology
  • Oxidation-Reduction
  • Transcription, Genetic
  • Wood / microbiology*

Substances

  • lignocellulose
  • Lignin