Hollow Porous VOx/C Nanoscrolls as High-Performance Anodes for Lithium-Ion Batteries

ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25954-25961. doi: 10.1021/acsami.6b07439. Epub 2016 Sep 20.

Abstract

Novel hollow porous VOx/C nanoscrolls are synthesized by an annealing process with the VOx/octadecylamine (ODA) nanoscrolls as both vanadium and carbon sources. In the preparation, the VOx/ODA nanoscrolls are first achieved by a two-phase solvothermal method using ammonium metavanadat as the precursor. Upon subsequent heating, the intercalated amines between the vanadate layers in the VOx/ODA nanoscrolls decompose into gases, which escape from inside the nanoscrolls and leave sufficient pores in the walls. As the anodes of lithium-ion batteries (LIBs), such hollow porous VOx/C nanoscrolls possess exceedingly high capacity and rate capability (904 mAh g-1 at 1 A g-1) and long cyclic stability (872 mAh g-1 after 210 cycles at 1 A g-1). The good performance is derived from the unique structural features of the hollow hierarchical porous nanoscrolls with low crystallinity, which could significantly suppress irreversible Li+ trapping as well as improve Li+ diffusion kinetics. This universal method of annealing amine-intercalated oxide could be widely applied to the fabrication of a variety of porous electrode materials for high-performance LIBs and supercapacitors.

Keywords: VOx/C nanoscrolls; anodes; hollow; lithium-ion batteries; low-crystalline.