Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via solvent annealing

Nanotechnology. 2016 Oct 14;27(41):415601. doi: 10.1088/0957-4484/27/41/415601. Epub 2016 Sep 8.

Abstract

We report the formation of nanoimprint master templates that can be used for the fabrication of bit patterned media (BPM). The template was formed by directed self-assembly, with solvent annealing, of a symmetric ABA triblock copolymer to form perpendicularly oriented lamellae on chemical patterns. We used a high-χ block copolymer, poly(2-vinyl pyridine)-block-polystyrene-block-poly(2-vinyl pyridine) to achieve smaller feature sizes than are possible with polystyrene-block-poly(methyl methacrylate). The work shows that triblock copolymers can provide a large processing window in terms of pitch commensurability. Using block-selective infiltration (atomic layer deposition with sequential long soaking/purge cycles), an alumina composite with high etch resistance was specifically incorporated into the polar and hydrophilic P2VP domains. Subsequently, the surface pattern was successfully transferred into underlying Si substrates by etching with a fluorine-containing plasma to create a nanoimprint master. The line/space pattern of the nanoimprint master met the BPM fabrication requirement of defectivity <10(-3). For demonstration purposes, the nanoimprint master was used to imprint a replica pattern of photoresist on a quartz wafer.