Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen

Phytopathology. 2017 Jan;107(1):70-74. doi: 10.1094/PHYTO-02-16-0072-R. Epub 2016 Nov 3.

Abstract

Raffaelea lauricola, a fungal symbiont of the ambrosia beetle Xyleborus glabratus, causes laurel wilt in members of the Lauraceae plant family. North American species in the family, such as avocado (Persea americana) and swamp bay (P. palustris), are particularly susceptible to laurel wilt, whereas the Asian camphortree (Cinnamomum camphora) is relatively tolerant. To determine whether susceptibility is related to pathogen colonization, a green fluorescent protein-labeled strain of R. lauricola was generated and used to inoculate avocado, swamp bay, and camphortree. Trees were harvested 3, 10, and 30 days after inoculation (DAI), and disease severity was rated on a 1-to-10 scale. By 30 DAI, avocado and swamp bay developed significantly more severe disease than camphortree (mean severities of 6.8 and 5.5 versus 1.6, P < 0.003). The extent of xylem colonization was recorded as the percentage of lumena that were colonized by the pathogen. More xylem was colonized in avocado than camphortree (0.9% versus 0.1%, P < 0.03) but colonization in swamp bay (0.4%) did not differ significantly from either host. Although there were significant correlations between xylem colonization and laurel wilt severity in avocado (r = 0.74), swamp bay (r = 0.82), and camphortree (r = 0.87), even severely affected trees of all species were scarcely colonized by the pathogen.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Green Fluorescent Proteins
  • Ophiostomatales / pathogenicity
  • Ophiostomatales / physiology*
  • Persea / microbiology*
  • Plant Diseases / microbiology*
  • Trees / microbiology
  • Weevils / microbiology*
  • Xylem / microbiology

Substances

  • Green Fluorescent Proteins