Kinetically Enhanced Electrochemical Redox of Polysulfides on Polymeric Carbon Nitrides for Improved Lithium-Sulfur Batteries

ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25193-201. doi: 10.1021/acsami.6b05647. Epub 2016 Sep 19.

Abstract

The kinetics and stability of the redox of lithium polysulfides (LiPSs) fundamentally determine the overall performance of lithium-sulfur (Li-S) batteries. Inspired by theoretical predictions, we herein validated the existence of a strong electrostatic affinity between polymeric carbon nitride (p-C3N4) and LiPSs, that can not only stabilize the redox cycling of LiPSs, but also enhance their redox kinetics. As a result, utilization of p-C3N4 in a Li-S battery has brought much improved performance in the aspects of high capacity and low capacity fading over prolonged cycling. Especially upon the application of p-C3N4, the kinetic barrier of the LiPS redox reactions has been significantly reduced, which has thus resulted in a better rate performance. Further density functional theory simulations have revealed that the origin of such kinetic enhancement was from the distortion of molecular configurations of the LiPSs anchored on p-C3N4. Therefore, this proof-of-concept study opens up a promising avenue to improve the performance of Li-S batteries by accelerating their fundamental electrochemical redox processes, which also has the potential to be applied in other electrochemical energy storage/conversion systems.

Keywords: adsorption; carbon nitride; graphene; lithium polysulfide; redox kinetics.