Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material

Sci Rep. 2016 Sep 6:6:32701. doi: 10.1038/srep32701.

Abstract

Pure W and W-(2%, 5%, 10%) Lu alloys were manufactured via mechanical alloying for 20 h and a spark plasma sintering process at 1,873 K for 2 min. The effects of Lu doping on the microstructure and performance of W were investigated using various techniques. For irradiation performance analysis, thermal desorption spectroscopy (TDS) measurements were performed from room temperature to 1,000 K via infrared irradiation with a heating rate of 1 K/s after implantations of He(+) and D(+) ions. TDS measurements were conducted to investigate D retention behavior. Microhardness was dramatically enhanced, and the density initially increased and then decreased with Lu content. The D retention performance followed the same trend as the density. Second-phase particles identified as Lu2O3 particles were completely distributed over the W grain boundaries and generated an effective grain refinement. Transgranular and intergranular fracture modes were observed on the fracture surface of the sintered W-Lu samples, indicating some improvement of strength and toughness. The amount and distribution of Lu substantially affected the properties of W. Among the investigated alloy compositions, W-5%Lu exhibited the best overall performance.

Publication types

  • Research Support, Non-U.S. Gov't