Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes

J Chem Phys. 2016 Aug 28;145(8):084304. doi: 10.1063/1.4961159.

Abstract

The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C60 (+) and C70 (+) are close to 49 and 51, respectively, and agree with mass spectrometry experiments.