Amplitude-dependent Lamb wave dispersion in nonlinear plates

J Acoust Soc Am. 2016 Aug;140(2):1319. doi: 10.1121/1.4961489.

Abstract

The paper presents a perturbation approach for calculating amplitude-dependent Lamb wave dispersion in nonlinear plates. Nonlinear dispersion relationships are derived in closed form using a hyperelastic stress-strain constitutive relationship, the Green-Lagrange strain measure, and the partial wave technique integrated with a Lindstedt-Poincaré perturbation approach. Solvability conditions are derived using an operator formalism with inner product projections applied against solutions to the adjoint problem. When applied to the first- and second-order problems, these solvability conditions lead to amplitude-dependent, nonlinear dispersion corrections for frequency as a function of wavenumber. Numerical simulations verify the predicted dispersion shifts for an example nonlinear plate. The analysis and identification of amplitude-dependent, nonlinear Lamb wave dispersion complements recent research focusing on higher harmonic generation and internally resonant waves, which require precise dispersion relationships for frequency-wavenumber matching.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.