Triticonazole enantiomers: Separation by supercritical fluid chromatography and the effect of the chromatographic conditions

J Sep Sci. 2016 Nov;39(21):4251-4257. doi: 10.1002/jssc.201600820. Epub 2016 Sep 27.

Abstract

Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5-dimethylphenylcarbamoyl) cellulose-coated chiral stationary phase in this work. The effects of co-solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co-solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of Rs /tR2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency.

Keywords: Chiral separation; Chromatographic conditions; Supercritical fluid chromatography; Triticonazole.