A Novel Method for Calculating Potency-Weighted Cumulative Phthalates Exposure with Implications for Identifying Racial/Ethnic Disparities among U.S. Reproductive-Aged Women in NHANES 2001-2012

Environ Sci Technol. 2016 Oct 4;50(19):10616-10624. doi: 10.1021/acs.est.6b00522. Epub 2016 Sep 14.

Abstract

Phthalates are ubiquitous chemicals linked to hormonal disruptions that affect reproduction and development. Multiple antiandrogenic phthalates exposure during fetal development can have greater impacts than individual exposure; thus, the National Academy of Sciences (NAS) recommends them for cumulative assessment. Using National Health and Nutrition Examination Survey data (NHANES, 2001-2012), we developed a potency-weighted sum of daily intake (∑androgen-disruptor; μg/kg/day) of di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBzP), and di(2-ethylhexyl) phthalate (DEHP) based on NAS recommendations, and included diethyl phthalate (DEP) and diisononyl phthalate (DiNP) in additional metrics (2005-2012). We compared racial/ethnic differences in ∑androgen-disruptor among 2842 reproductive-aged women. In sensitivity analyses, we assessed the influence of potency assumptions, alternate urine dilution adjustment methods, and weighting phthalate metabolites directly rather than daily intake estimates of parent compounds. We found that DEHP contributed most to ∑androgen-disruptor (48-64%), and that ∑androgen-disruptor decreased over time. Black women generally had higher cumulative exposures than white women, although the magnitude and precision of the difference varied by model specification. Our approach provides a blueprint for combining chemical exposures linked to common adverse outcomes, and should be considered in future exposure, risk, and epidemiological studies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Dibutyl Phthalate / metabolism
  • Environmental Exposure
  • Environmental Pollutants*
  • Female
  • Humans
  • Nutrition Surveys*
  • Phthalic Acids
  • Reproduction

Substances

  • Environmental Pollutants
  • Phthalic Acids
  • Dibutyl Phthalate