Expanding the pharmacological profile of κ-hefutoxin 1 and analogues: A focus on the inhibitory effect on the oncogenic channel Kv10.1

Peptides. 2017 Dec:98:43-50. doi: 10.1016/j.peptides.2016.08.008. Epub 2016 Aug 28.

Abstract

Peptide toxins, such as scorpion peptides, are interesting lead compounds in the search for novel drugs. In this paper, the focus is on the scorpion peptide κ-hefutoxin 1. This peptide displays a cysteine-stabilized helix-loop-helix fold (CSα/α) and is known to be a weak Kv1.x inhibitor. Due to the low affinity of κ-hefutoxin 1 for these channels, it is assumed that the main target(s) of κ-hefutoxin 1 remain(s) unknown. In order to identify novel targets, electrophysiological measurements and antifungal assays were performed. The effect of κ-hefutoxin 1 was previously evaluated on a panel of 11 different voltage-gated potassium channels. Here, we extended this target screening with the oncogenic potassium channel Kv10.1. κ-Hefutoxin 1 was able to inhibit this channel in a dose-dependent manner (IC50∼26μM). Although the affinity is rather low, this is the first peptide toxin ever described to be a Kv10.1 inhibitor. The structure-activity relationship of κ-hefutoxin 1 on Kv10.1 was investigated by testing eight κ-hefutoxin 1 variants using the two-electrode voltage clamp technique. Several important amino acid residues were identified; the functional dyad residues (Tyr5 and Lys19), N-terminal residues (Gly1 and His2) and the amidated C-terminal residue (Cys22). Since the CSα/α fold is also found in a class of antifungal plant peptides, the α-hairpinines, we investigated the antifungal activity of κ-hefutoxin 1. κ-Hefutoxin 1 showed low activity against the plant pathogen Fusarium culmorum and no activity against three other yeast and fungal species, even at high concentrations (∼100μM).

Keywords: Antifungal assays; Cancer; K(v)10.1; Potassium channel; Scorpion; κ-Hefutoxin 1.

MeSH terms

  • Animals
  • Antifungal Agents / pharmacology*
  • Antineoplastic Agents / pharmacology*
  • Cysteine / metabolism
  • Ether-A-Go-Go Potassium Channels / antagonists & inhibitors*
  • Ether-A-Go-Go Potassium Channels / genetics
  • Ether-A-Go-Go Potassium Channels / metabolism
  • Helix-Loop-Helix Motifs
  • Oocytes
  • Potassium Channel Blockers / pharmacology*
  • Potassium Channels, Voltage-Gated / antagonists & inhibitors*
  • Scorpion Venoms / pharmacology*
  • Spores, Fungal / drug effects
  • Structure-Activity Relationship
  • Xenopus laevis
  • Yeasts / drug effects

Substances

  • Antifungal Agents
  • Antineoplastic Agents
  • Ether-A-Go-Go Potassium Channels
  • KCNH1 protein, human
  • Potassium Channel Blockers
  • Potassium Channels, Voltage-Gated
  • Scorpion Venoms
  • kappa-hefutoxin 1, Heterometrus fulvipes
  • Cysteine