One-Step Synthesis of Zeolite Membranes Containing Catalytic Metal Nanoclusters

ACS Appl Mater Interfaces. 2016 Sep 21;8(37):24671-81. doi: 10.1021/acsami.6b06576. Epub 2016 Sep 9.

Abstract

Metal-loaded zeolitic membranes are promising candidates as catalytic membrane reactors. We report a one-step synthesis method to synthesize zeolite membranes containing metal nanoclusters, that has advantages in comparison to multistep methods such as impregnation and ion exchange. Pure-silica MFI zeolite-Pt hybrid membranes were prepared by hydrothermal synthesis with addition of 3-mercaptopropyl-trimethoxysilane (MPS) and a platinum precursor. Composition analysis and mapping by energy-dispersive X-ray spectroscopy (EDX) reveal that Pt ions/clusters are uniformly distributed along the membrane cross-section. High-magnification scanning transmission electron microscopy (STEM) analysis shows that Pt metal clusters in the hybrid zeolite membrane have a diameter distribution in the range of 0.5-2.0 nm. In contrast, a pure-silica MFI membrane synthesized from an MPS-free solution shows negligible incorporation of Pt metal clusters. To characterize the properties of the hybrid (zeolite/metal) membrane, it was used as a catalytic membrane reactor (CMR) for high-temperature propane dehydrogenation (PDH) at 600 °C and 1 atm. The results indicate that Pt metal clusters formed within the MFI zeolite membrane can serve as effective catalysts for high-temperature PDH reaction along with H2 removal via membrane permeation, thereby increasing both conversion and selectivity in relation to a conventional membrane reactor containing an equivalent amount of packed Pt catalyst in contact with an MFI membrane. The hybrid zeolite-Pt CMR also showed stable conversion and selectivity upon extended high-temperature operation (12 h), indicating that encapsulation in the zeolite allowed thermal stabilization of the Pt nanoclusters and reduced catalyst deactivation.

Keywords: MFI; membrane reactor; metal cluster; propane dehydrogenation; zeolite membrane.